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HIGH RESOLUTION, NARROW BEAM ECHO SOUNDER

E. D. Squier, R. B, Williams, S. P. Burke
and F. H. Fisher

University of California, San Diego
Marine Physical Laboratory of the
Scripps Institution of Oceanography
San Diego, California 92132

ABSTRACT

This work describe§ the development of a high resolution echo sounder for use with
tpe R/P FLIP.V The 1nstyument has a source level of +227 dBuPa, a 3 dB beam width of
1" and a receiver sensitivity of -176 dB/uPa providing operating capabilities as a

bottom sounder for water depths to 2000 m.

The results of its operation at sea along

with observations ?f acoustic returns from multiple thin scattering layers to depth
of over 400 m are included, Graphic examples under various operating conditions are
presented as well as reflection coefficients measured from bottom returns and

acoustic scattering target strengths.

INTRODUCTION

Recent bottom bounce data collected
from the stable buoy R/P FLIP-/ have required
detailed bathymetric data in the bottom
reflection area in order to measure bottom
slopes in the vicinity of bottom bounce
points, In this way measured vertical and
horizontal angles of arrival of signals via
the bottom bounce path can be related to
bottom topography.

A high resolution echo sounder has
been developed to fill this requirement. The
echo sounder has a 3 dB beam width of 1 thus
illumipating a 17.5 m diameter spot at a depth
of 1 km. The plate on which the transducer
array is mounted can be tilted 10° in two
orthogonal directions in order to measure
local bottom slopes.

fhe array has been used at sea mounted
at 94 m depth on the R/P FLIP in the downward
looking position as shown in Fig. 1. The
array has also been operated with the beam
pointed in a horizontal direction. When
operated in this manner, the system can be
used for the measurement of water particle
velocity.

The details of the echo sounder system
are discussed in the next section and in the

last section, some experimental results from
operations at sea will be presented.

I. ECHO SOUNDER SYSTEM
1. SOURCE

The source and receiving system block
diagram is shown in Fig. 2; the array
positioning system block diagram, in Fig. 3.

The transmitting array is made up of
eight transducers placed on an aluminum plate
1.27 cm thick by 96.5 cm square (0.5" x 38"
square). The transducers are constructed of
four 4.6 cm square, thickness resonant, barium
titanate blocks butted together. The sides
and rear are backed with a pressure release
material, Corprene., The unit is cast in
polyurethane with an underwater cable and
connector, Fig. 4.

The placement of the transducers on
the aluminum plate was optimized for a 1° beam
and low side 1lobe characteristics using a
computer., The element placement on the
aluminum plate is shown in Fig. 5 and the
computer printout of the predicted bean
pattern for the 8-element array is shown in
Fig. 6.

o B L L
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FLIP

SEA SURFACE

’
LAYERED
1 SCATTERING
b
1° SOURCE BEAM
4 9° RECEIVER BEAM
SEA BOTTOM

Figure 1. Schematic diagram of echo sounder on R/P FLIP showing scattering layers.
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Figure 2. Source and receiver block diagram.
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Figure 3. Array position control block diagram.
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Figure 6. Computer printout of source direc-
tivity pattern.

Each of the eight transducers is driven
by a power amplifier capable of delivering 400
W at 87.5 kHz, in a pulsed mode operation for
pulse lengths up to 100 msec. The power
amplifiers are driven in parallel producing a
source level of +227 dB/uPa (Table I). The
source level estimate of Table I is in
agreement with a level obtained by extra-
polating a measurement made at lower power on
a single transducer.

Electrical driving power is provided by
an inboard 60 V, 2.5 A regulated supply. A
22,000p F storage capacitor is provided at
each power amplifier. The energy stored by
this capacitor is 40 joules. The capacitor
is charged through 100 ohms. This time
constant of 2.2 sec and the stored energy put
a maximum limit on the operating duty cycle of
the echo sounder., For bottom sounding work a
3.5 msec pulse at 2 sec intervals was chosen.
This is a duty cycle of 1.75% with .7 joule of
energy being used.

Though the nominal design frequency was
90 kHz the exact operating frequency was
chosen by comparing the driving current phase
of each of the eight transducers. A frequency
of 87.5 kHz prove’ to be the best choice, with
maximum electrizal phase errors of 20° between
the various units.

SI0 Reference 76-8

TABLE |

Source Level Calculstions

Input power, 400 W + 26 dbv
Assume efficiency -6
Acoustic power + 2048
Power to intensity +171 @B/uPa/w
1 ity per transd +191 dB/pPe
Beam width correction) 360

) 20log e +27d8

15°at -10 dB )

Array gain 10 log 8 + 9
Source level +227 A/ plPa

The 87.5 kHz signal is generated by a
crystal controlled oscillator which is gated
to a line driver and transmitted by cables to
the outboard units which contain the power
amplifiers for each hydrophone in a separate
pressure container. The pulse rate, width and
source level are controlled by the inboard
electronics in the laboratory. The triggering
of the gated pulse can be controlled by an
external signal, allowing synchronization with
the readout recorder.

In sea water, cavitation occurs at about
1  W/cm?/atmosphere. The area of each
transducer is 90 cm? which yields a cavitation
limit of 90 W per transducer. For the maximum
power of 400 watts for each transducer, the
minimum pressure is 400/90 = 4.4 atmosphere
which corresponds to a minimum depth of 46 m
for safe operation at full power,

2. RECEIVING SYSTEM

The receiving hydrophone is of similar
construction to the transducers shown in Fig.
4 with some additional electrostatic shield.
The hydrophone unit is mounted on the same
array plate as the transducers, Fig. 5. The
significant hydrophone characteristics are
listed in Table II and the measured receiving
hydrophone beam pattern is presented in Fig.

The hydrophone is transformer-coupled
to a low noise preamplifier. Diode limiters
are used at both the input and output of the
pre-amp to reduce the overload caused by the
close proximity of the high level source
pulse, The pre-amplifier is followed by an
87.5 kHz band pass filter, a remote gain
controlled amplifier and a differential line
driver all located in a pressure container at
the back of the array. A six conductor 400 ft
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TABLE Il

Receiving Hydrophone (Ser. #11-72)

Sensitivity at 87,5 kHz - 176 dB/uPa

3 4B Beamwidth 9°

1U dB Beamwidth 15°

Directivity index (20 log % 27 dB

First side lobe level 24 dB

First side lobe angle 14°

Impedance 300Q1in series
with 4700 pf

RECEIVING ARRAY
DIRECTIVITY PATTERN

0°

Figure 7. Receiving hydrophone directivity
pattern.

cable is used for power and the signal on a
balanced line and for remote control of the
gain. The inboard receiver consists of a
differential line receiver, band pass filter,
time varied gain stage and a precision depth
recorder (see Fig. 2). The inboard filter
output should be used where accurate amplitude
information is required. Table III lists the
receiver characteristics., '

The thermal noise spectrum level for an
equivalent input resistor is -173 dBv as
compared with the performance measurement of
-168 dBv. The noise measured in a calm sea
with the array located 86 m below the surface
(and pointed down) is at the instrument noise
pressure spectrum level of +8 dBjuPa, This is
lower than the expected sea surface noise of
+12 dB/uPa for a sea state zero.

SIO Reference 76-8

TABLE I}

Receiver Charactenistics

Outboard Gain Gain Output Nolse Bquiv, ingut Nelee
1 70 &8 58 dBbv - 120 div
2 85 45 - 1%
k) 100 0 - 130
4 107 3 - 1%
Overall bandpsss 6, 3 kHz s dB
Noise spectrum level 1 cycle band -168 dB

The bottom return depth resolution is
determined by the receiver bandwidth, t =-Ad/C
= 1/BWN. The 6.3 kHz bandwidth will allow a
resolution of Ad = D/fx = (1500 wm/sec)/ 6.3
kHz = 24 ca.

3. TIME VARIED GAIN

After the first sea test a time varied
gain circuit was added in which the gain is
increased at a rate that approximates the
losses introduced by spherical spreading and
absorption (Fig. 8) as reported by Bezdek.2/

The output of the T,V.G. circuit drives
a graphic depth recorder for a display of all
echo returns to the system. From Fig. 8 it is
seen that the T.V.G. does not fully compensate
for the total spreading and absorption loss at
the maximum range.

4, ARRAY POSITION CONTROL

The array base plate is mounted on a
carriage assembly that can be tilted from the
normal vertical beam position by 10" in any
direction. This is shown in Fig. 9 mounted at
the bottom of FLIP. This allows profiling of
a small bottom area. The positioning of the
array is by two hydraulic linear actuators
controlled by electrically operated solenoid
valves. The hydraulic pump is located inboard
with pressure hoses running the length of
FL{P's hull. The array position angle is
monitored by two linear variable differential
transformers (LVDT), with inboard readout
(Fig. 3). Computer control of the plate will
ultimately be included. In this way, the
motion of FLIP obtained with an inertial
guidance system can be included directly into
on line processing to obtain the bottom slope
data.
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60

- LOSSES SPREADING
& ABSORPTION

40— TIME VARIED GAIN

Gain dB

J ] |
a 4 8 12 16 20
Time. seconds

Figure 8. T.V.G. characteristics of recciver system,

Figure 9. Photograph of array for bottom sounding on bottom of FLIP.
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For making measurements of horizontal
water velocities in the horizontal looking
mode of operation, it was necessary to modify
the array. The tilt mechanisms were removed
and the array plate was rotated 90" with a
hxdraulic motor. The array is fixed into the
0" or 90" position by a solenoid operated
locking pin. The motor and locking solenoid
are powered by the inboard hydraulic pump.

S. COLLIMATOR

With the array jn the horizontal mode
intersection of the 14 side lobe with the

ELECTRONICS
PACKAGES

8 ELEMENT
ARRAY

surface is about 360 m from the array. The
surface produced strong interference with the
main beam which receives energy only from weak
scatterers in the medium.

In order to reduce the side lobe
response an acoustic collimator was added to
the array (Fig. 10). One inch thick sheets of
sound absorbing rubber were placed in a
series of rings torward of the transducers as
well as on the inside of a cylindrical shell
between the array plate and the rings. This
reduced the interference caused by the
receiver side lobes especially when the array
is used in a horizontal looking mode.

COLLIMATOR

Figure 10, Artist's illustration of echo sounder.
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The collimated array o8 mounted about b measure the array source performance.
4 m  from the bottom ot FLIP s shown 1n ki, birectivity patterns with and without the i
3 1t. o protect  the array  from wave damage, collimator were made as well as source level |
stee] cable tie downs are used.  Once FLIP @s measurements., The array was operated at a
1 the vertical position, explosive  cahle depth of 18 m which required limiting the o
cutters  are activated to free the uarray for power to prevent cavitation, The calibrated 3
rotation, receiving hydrophone was placed 125 m from the E
array to insure far ficld measurements.
6,  SOURCH CALIBRATION Beam patterns displayed side lobes at
about 1.5 and 3.5 as predicted. The main

The Marine  Physicul Laborarory's Lake beam to first side lobe level appeared to be :
San Vicente culibration facilityd was used to sumewhat lower than expected. This may be due p
1

3
1

Figure 11. Photograph of array with collimator on FLIP.
4
8

3 E
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to difficulties in maintaining the geometry BOTTOM REFLECTION

between the array and receiving hydrophone.

Water flow currents in the lake might cause 1389 B T {
slight tilting of the array, thereby reducing I &
the main beam peak. With 125 m between source
and receiver a .5" tilt would result ina Il m
depth error and reduce the received signal
level by 3 dB. Figure 12 is an example of the
directivity patterns produced by this
experiment, the main beam is about 7 dB above
the first side lobes,

e - -t > e et e tar e o

. - i ot o o e

Depth. meters

- ————— - = 4 > W ® 2 s e e e oo

180° 1863 — - mm e - o Ry e o o e

\ Fiqure 13, GDR record of bLottom reflections.

SAN VICENTE
DIRECTIVITY PATTERN

o TABLE IV

Figure 12. Transmitted beam directivity pat- Bottom Reflection Coefficient Distance to Bottom 1400 m
tern,

Source level 227 dB/uPa

Received spectrum level 66 dB/uPa+3 dB
The collimator proved to be quite
effective in reducing the level of the side Spreading loss 20 log (2 x depth) 69 a8
lobes at angles greater than 20" from the main 4/

beam. The level reduction is about 20 dB. Absorption loss 21 dB/Km= 3 a8
The source when operated at the reduced Reflection coefficient 34 dB+3 dB
power of 50 watts per transducer produced a
source level of +219 dB/uPa. Extrapolating to
the normal operating level of 400 watts
indicates a source level of +228 dB/uPa which *Bezdek did additional work at 90 kHz,
is one dB higher than the estimate of Table I.
II. EXPERIMENTAL RESULTS The maximum depth capability estimated
from these measurements i given in Table V.
1. BOTTOM RETURNS For 400 watts electrical power to each trans-
ducer and with the present receiver noise
Echo returns from the bottom are shown input levels, the system is limited to depths
in Fig., 13, The reflection coefficient of the of about 2000 m.
bottom was calculated as shown in Table IV. A decrease in input noise to the
The measured reflection coefficient of theoretical minimum would add a maximum of S
-34 dB is in excellent agreement with a value dB to the signal to noise ratio. Increasing
determined by Bezdek2/ at 75 kHz in approxi- the source power to 1000 watts per transducer
mately the same area; his measurements were would add another 4 dB. This 9 dB increase in
made near the bottom, however, and obtained an signal to noise would increase the depth
average amplitude reflection coefficient of capability for bottom echo sounding only to
0.018 corresponding to -35 dB. Note that a 22000 m, assuming a -34 dB reflection
weaker(47 dB) echo appears just above the coefficient at the bottom. The increase in
bottom echo, We do not yet know how to range capability is small because of the large
explain this echo. absorption coefficient.
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TABLE V

Maximum Depth Capability of Present System

Source level v 227 4B/ uPa
background noise + N JB/uPa
Signal to noise 1 cycle band + 219 d8
Bandwidth « 34 dB
Bottom loss - 34dB
Net signal to noise + 147 dB
Maximum depth 1900 m

2. ACOUSTIC LAYERING AND INTERNAL WAVES

Acoustic echo-sounding recordings have
shown the existence of multiple thin lavers at
depths of from 98 down to 470 m. The record
in Fig. 14 was obtained when FLIP was in a

Depth. meters

Forta, C e -
Bl bl o
242~z e - 'm&——;—m

e o e gm & s
e e e e
279 \ 1
[ Time. minutes 10

Figure 14. GDR record showing layoring and
internal wave action.

SIQ Reference 76-8

three point moor near San Diego 117°24'W,
32711'N in 1410 m of water during January
1975, The source was keyed with a .6 ms pulse
every 2 seconds. For this first operation of
the ccho-sounder the signals were recorded on
a4 graphic depth recorder without the use of
electronic (T.V.G.) compensation for sperhical
spreading and absorption. Distinct layering
of the backscatter is evident, The individual
layers can be followed as they vary in depth
with 4 period of approximately 20 minutes and
4 displacement on the order of 5 m, suggesting
internal wave action, The layer thickness was
no greater than I5 ¢m; shorter pulses are
needed to determine if the layers are thinner.

Initially we reportedd’ reflection
coefficients for these layers, assuming we
were dealing with specular reflection from the
layers, One of the problems in analyzing the
data is that FLIP's motion makes it somewhat
difficult to follow echoes from a particular
layer. Subsequent work convinced us that we
were, in fact, receiving echoes from
individual scatterers populating these layers.
That is, ecven though layers appear to be
somewhat continuous on a GDR  record we are
looking at scatterers which drift through the
transmitted beam with a dwell time 1n the beam
corresponding to the relative drift between
FLIP and the scatterers,

Target strengths calculated for these
scatterers are shown in Table VI. It is seen
that the target strength increases with depth,

A scattering layer 20 m thick and at a
depth of 250 m, as seen in Fig. 15, remained
at a constant depth until 1650 hours, and then
moved up passing the array depth of 94 m at
1730 hours.

An oscilloscope trace displayed in Fig.
16 1s a portion of a typical received signal
showing the variation in amplitude of the
returns, The echo level variation
observed in Table VI at the depths of 245-284
and 319 meters is evident.

The instrument was operated at sea a
second time in May 1975. The first station
was at 120°40'W, 30°54'N in 3840 m of water
with FLIP drifting in the vertical position.
The receiver overload time had been reduced to
17 ms. The time varied gain circuit in use at
this time gave a greater usable range to the
recorder., Figure 17 shows strong internal
wave action. The density of the layering was
similar to that observed in January. The
horizontal lines are artifacts dueto the air-
sea surface reflection as seen with a back
lobe of the array, and hull reflections be-
cause the array was mounted about 5 m above
the bottom of FLIP,

A difference in these later records
from carlier ones can be noted in the area
near the array. This is possible because of
the shorter receiver recovery time, Returns
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T'ABLE VI TIME-AMPLITUDE DISPLAY

Layered Scatterers as Observed from FLIP
with 87,5 kHz Narrow Beam Echo Sounder

Depth (d) Echo Level Total Lousses®  Target Strength !
m dB/uPa o8 {Est. error ¢ 3 dB)
il
146 94 70 - 63
169 88 ' -0l
s
5 207 84 87 - 36
g 244 79 93 - 55
H 319 77 103 - 47
F 394 67 11 -4y
137 97 70 - 60
179 91 82 - 54 3
w
& 201 87 87 - 53 245 320
> “ =
3 235 8 9 54 Depth, meters
< 3t 77 103 - 47
&
7 - . .
385 2 t H“ Figure 16. Oscillograph trace showing typi-
cal echo returns.
141 B8 72 - a7
: 160 47 % -2
1 W
N 19% K1 37 -39
3 235 o7 93 - 57
z 310 69 103 - 55
~
343 66 1 - 54
Nate Locatwon Water Depth
30 january 1975 117°24W 32 11N 1310 m
] 26 May 1975 120°40'W 30 54'N 3540 m
4 29 May 1975 FI7P32°W 32 29°N 180 m

* Towal losses 2(20 Jog ) + . 021(2d)

Depth. meters

10 MIN j

Figure 15. GDR record showing migration upward of deep
scattering layer, January 1975,
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Figure 17. GDR rocord showing larie amplitude internal waves, May 1975,

down to 115 m appear as individual groups.
Oscillations at about the 20 minute internal
wave period can still be seen at these
shallower depths. When observing the returns
at close range it should be remembered that
the near field range is about 60 m.

Movement of  scatterers toward the
surface is evident in the recording made
between the hours of 1900 and 2000, (Fig. 18);
between the hours of 0545 and 0645 the
movement is away from the surface (Fig. 19).

Large targets were observed at various
times as seen in Fig., 20. They appear to be
just under the surface as secen with the back
lobe of the array. No explanation is
available yet regarding the nature of these
targets,

The second station of the May 1975
operation was made at 117°31.5'W, 32°29'N in
1180 m of water. At this location near San
Diego, the number of layers was less than that
recorded at the deep water station. Figure 21
was made at this location. A scattering layer
can be observed moving to deeper water
beginning at 0549 hours. Again, some large
targets appear for which we have no
explanation as yet.

During one phase of the operation the
array was turned 90 to a side looking position
(Fig. 22). The scatterers can be seen
moving away from FLIP. The slope of this
movement indicates a relative water current of
15 cm/sec with respect to FLIP along the axis
of the transmitted beam.
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Figure 18. GOR record showing poersistoncso of launers atrter gpward micrat:on ot
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Fiqure 19. GUR record showing persistence of layers after downward
migration of deep scattering layer, Man 1975,




Squier, Williams, Burke, Fisher S10 Reference 76-8

Depth, meters

Time, minutes

Flgqure 20. GDR record large echoes of undertermined origin, May ]975.

123 -
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275 o ’ 1

0540 0600 0620

Time, 29 May 1975

Figure 21. GDR record layer of large cchoes of undetermined oriain qo1nyg
down, May 1975, 9
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14

Range, meters

Figure 22. GUR record with arrey in horizontal mode showing
one component of current drift relative to FLIP.

I11. CONCLUSION

This instrument was originally
developed to fill a requirement for a high
resolution bottom sounder. It is presently
capable of operating in water with a maximum
depth of approximately 2000 m. To obtain a
substantial increase in depth capability a
multi-element receiving array would be
necessary along with an increase in source
power as well as a decrease in the receiver
background noise.

A second use of the instrument has
emerged from data gathered while operating the
instrument from the stable buoy FLIP. These
data indicate its utility for the observation
of layering effects to depths of over 400 m.
These returns may be due to density
stratification enhanced by suspended
particulate matter or organisms.

The development of this instrument was
based on new data from experiments on the
pressure dependence of sea water absorption by
Bezdek.2/ Data obtained from this instrument
confirm bottom reflection data also reported
by Bezdek.3/

This work has been sponsored by the
Office of Naval Research under Contract
N00014-69-A-0200-6002.
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